Applied Functional Analysis: Applications to Mathematical Physics - Applied Mathematical Sciences - Eberhard Zeidler - Books - Springer-Verlag New York Inc. - 9781461269106 - October 6, 2012
In case cover and title do not match, the title is correct

Applied Functional Analysis: Applications to Mathematical Physics - Applied Mathematical Sciences Softcover Reprint of the Original 1st Ed. 1995 edition

Eberhard Zeidler

Price
$ 132.49

Ordered from remote warehouse

Expected delivery Jan 8 - 17, 2025
Christmas presents can be returned until 31 January
Add to your iMusic wish list

Also available as:

Applied Functional Analysis: Applications to Mathematical Physics - Applied Mathematical Sciences Softcover Reprint of the Original 1st Ed. 1995 edition

Description for Sales People: This book represents an elementary introduction into applied functional analysis addressed to beginning graduate students in mathematics, physics and engineering. The book may also be utilized as a reference book. This work consists of two volumesTable of Contents: 1 Banach Spaces and Fixed-Point Theorems.- 1.1 Linear Spaces and Dimension.- 1.2 Normed Spaces and Convergence.- 1.3 Banach Spaces and the Cauchy Convergence Criterion.- 1.4 Open and Closed Sets.- 1.5 Operators.- 1.6 The Banach Fixed-Point Theorem and the Iteration Method.- 1.7 Applications to Integral Equations.- 1.8 Applications to Ordinary Differential Equations.- 1.9 Continuity.- 1.10 Convexity.- 1.11 Compactness.- 1.12 Finite-Dimensional Banach Spaces and Equivalent Norms.- 1.13 The Minkowski Functional and Homeomorphisms.- 1.14 The Brouwer Fixed-Point Theorem.- 1.15 The Schauder Fixed-Point Theorem.- 1.16 Applications to Integral Equations.- 1.17 Applications to Ordinary Differential Equations.- 1.18 The Leray-Schauder Principle and a priori Estimates.- 1.19 Sub- and Supersolutions, and the Iteration Method in Ordered Banach Spaces.- 1.20 Linear Operators.- 1.21 The Dual Space.- 1.22 Infinite Series in Normed Spaces.- 1.23 Banach Algebras and Operator Functions.- 1.24 Applications to Linear Differential Equations in Banach Spaces.- 1.25 Applications to the Spectrum.- 1.26 Density and Approximation.- 1.27 Summary of Important Notions.- 2 Hilbert Spaces, Orthogonality, and the Dirichlet Principle.- 2.1 Hilbert Spaces.- 2.2 Standard Examples.- 2.3 Bilinear Forms.- 2.4 The Main Theorem on Quadratic Variational Problems.- 2.5 The Functional Analytic Justification of the Dirichlet Principle.- 2.6 The Convergence of the Ritz Method for Quadratic Variational Problems.- 2.7 Applications to Boundary-Value Problems, the Method of Finite Elements, and Elasticity.- 2.8 Generalized Functions and Linear Functionals.- 2.9 Orthogonal Projection.- 2.10 Linear Functionals and the Riesz Theorem.- 2.11 The Duality Map.- 2.12 Duality for Quadratic Variational Problems.- 2.13 The Linear Orthogonality Principle.- 2.14 Nonlinear Monotone Operators.- 2.15 Applications to the Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality Principle.- 3 Hilbert Spaces and Generalized Fourier Series.- 3.1 Orthonormal Series.- 3.2 Applications to Classical Fourier Series.- 3.3 The Schmidt Orthogonalization Method.- 3.4 Applications to Polynomials.- 3.5 Unitary Operators.- 3.6 The Extension Principle.- 3.7 Applications to the Fourier Transformation.- 3.8 The Fourier Transform of Tempered Generalized Functions.- 4 Eigenvalue Problems for Linear Compact Symmetric Operators.- 4.1 Symmetric Operators.- 4.2 The Hilbert-Schmidt Theory.- 4.3 The Fredholm Alternative.- 4.4 Applications to Integral Equations.- 4.5 Applications to Boundary-Eigenvalue Value Problems.- 5 Self-Adjoint Operators, the Friedrichs Extension and the Partial Differential Equations of Mathematical Physics.- 5.1 Extensions and Embeddings.- 5.2 Self-Adjoint Operators.- 5.3 The Energetic Space.- 5.4 The Energetic Extension.- 5.5 The Friedrichs Extension of Symmetric Operators.- 5.6 Applications to Boundary-Eigenvalue Problems for the Laplace Equation.- 5.7 The Poincare Inequality and Rellich s Compactness Theorem.- 5.8 Functions of Self-Adjoint Operators.- 5.9 Semigroups, One-Parameter Groups, and Their Physical Relevance.- 5.10 Applications to the Heat Equation.- 5.11 Applications to the Wave Equation.- 5.12 Applications to the Vibrating String and the Fourier Method.- 5.13 Applications to the Schrodinger Equation.- 5.14 Applications to Quantum Mechanics.- 5.15 Generalized Eigenfunctions.- 5.16 Trace Class Operators.- 5.17 Applications to Quantum Statistics.- 5.18 C*-Algebras and the Algebraic Approach to Quantum Statistics.- 5.19 The Fock Space in Quantum Field Theory and the Pauli Principle.- 5.20 A Look at Scattering Theory.- 5.21 The Language of Physicists in Quantum Physics and the Justification of the Dirac Calculus.- 5.22 The Euclidean Strategy in Quantum Physics.- 5.23 Applications to Feynman s Path Integral.- 5.24 The Importance of the Propagator in Quantum Physics.- 5.25 A Look at Solitons and Inverse Scattering Theory.- Epilogue.- References.- Hints for Further Reading.- List of Symbols.- List of Theorems.- List of the Most Important Definitions."Publisher Marketing: A theory is the more impressive, the simpler are its premises, the more distinct are the things it connects, and the broader is its range of applicability. Albert Einstein There are two different ways of teaching mathematics, namely, (i) the systematic way, and (ii) the application-oriented way. More precisely, by (i), I mean a systematic presentation of the material governed by the desire for mathematical perfection and completeness of the results. In contrast to (i), approach (ii) starts out from the question "What are the most important applications?" and then tries to answer this question as quickly as possible. Here, one walks directly on the main road and does not wander into all the nice and interesting side roads. The present book is based on the second approach. It is addressed to undergraduate and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems that are related to our real world and that have played an important role in the history of mathematics. The reader should sense that the theory is being developed, not simply for its own sake, but for the effective solution of concrete problems. viii Preface This introduction to functional analysis is divided into the following two parts: Part I: Applications to mathematical physics (the present AMS Vol. 108); Part II: Main principles and their applications (AMS Vol. 109).

Contributor Bio:  Zeidler, Eberhard Eberhard Zeidler, one of the world's most renowned architects, moved to Canada from Germany in 1951. Zeidler, now partner emeritus of Zeidler Partnership Architects, was recently named Cambridge Who's Who Professional of the Year in Architecture and is the recipient of four honorary degrees. He continues to make a remarkable impact on North America's architectural history and lives in Toronto.


481 pages, biography

Media Books     Paperback Book   (Book with soft cover and glued back)
Released October 6, 2012
ISBN13 9781461269106
Publishers Springer-Verlag New York Inc.
Pages 481
Dimensions 156 × 234 × 26 mm   ·   716 g
Language English  

Show all

More by Eberhard Zeidler